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We study the ground state phase diagram of the two dimensional t − t ′ − U Hubbard
model concentrating on the competition between antiferro-, ferro-, and paramagnetism.
It is known that unrestricted Hartree–Fock- and quantum Monte Carlo calculations
for this model predict inhomogeneous states in large regions of the parameter space.
Standard mean field theory, i.e., Hartree–Fock theory restricted to homogeneous states,
fails to produce such inhomogeneous phases. We show that a generalization of the mean
field method to the grand canonical ensemble circumvents this problem and predicts
inhomogeneous states, represented by mixtures of homogeneous states, in large regions
of the parameter space. We present phase diagrams which differ considerably from
previous mean field results but are consistent with, and extend, results obtained with
more sophisticated methods.
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1. INTRODUCTION AND RESULTS

1.1. Background

Hubbard-type models in two dimensions have been frequently studied in the
context of high temperature superconductivity (HTSC) and other strongly corre-
lated systems. (1) Despite of considerable efforts and various different theoretical
approaches (for reviews see e.g. Refs. 2–5) no complete picture of its properties
has been reached. Thus the problem of getting reliable theoretical understanding
of 2D Hubbard-type models in the parameter regime of interest for HTSC remains
to be a problem of considerable importance.
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Mean field theory, i.e. Hartree–Fock theory restricted to states which are in-
variant under a subgroup of translations, is one of the simplest techniques which
can be used to study interacting fermion systems. It is conceptually and compu-
tationally simple, provides exact upper bounds to ground states energies, (6,7) and
has been a valuable guide for developing theoretical understanding of phenomena
like superconductivity or magnetism. This technique was applied to 2D Hubbard-
like models before and around the discovery of HTSC. (8,9) However, the results
obtained then were in qualitative disagreement with what was known from more so-
phisticated methods. For example, for the 2D (one-band repulsive) Hubbard model,
these mean field studies predicted one and the same antiferromagnetic phase not
only at half-filling, but also in a finite doping regime around half filling (see Fig. 3
in Ref. 8). It is known from unrestricted Hartree–Fock calculations(10−12) and
other methods (8) that commensurate antiferromagnetic states cannot exist away
from half filling and intermediate coupling values, in contrast with results from
mean field theory. Our aim is to advocate a natural generalization of mean field
theory to the grand canonical ensemble (13,14) which is designed to overcome these
inconsistencies without increasing the computational effort. (15,16) The main new
results in the paper are magnetic phase diagrams for 2D Hubbard-like models
obtained with that method. These mean field phase diagrams differ qualitatively
from the previous mean field results mentioned above but are consistent with
results obtained by other methods.

Our main point is that mean field theory is not only capable to determine
homogeneous phases, but it can also be used to detect the possibility that there are
regions in phase space where the thermodynamically stable phase is not homoge-
neous. To be more specific, we revisit mean-field theory for the 2D t − t ′ − U Hub-
bard model (see (1) below for precise definitions) restricted to anti-ferromagnetic
(AF), ferromagnetic (F) and paramagnetic (P) states. (8,9) However, when answer-
ing the question “which of the following Hartree–Fock states has lowest free
energy: a homogeneous AF, F or P state?,” we differ from the previous studies
mentioned by also allowing the possible answer “or a phase separated state where
two of such homogeneous states are mixed and coexist at the same time?”. By the
term “mixed phase” we refer to a solution to the mean field equations where the
free energies of the homogeneous solutions are degenerate. Technically, we allow
for mixed phases by using the grand canonical ensemble and carefully accounting
for the doping constraint.(13−16) We find that, in a large part of parameter space,
the mean field phases are indeed mixed, and the phase diagrams we obtain are thus
much richer than the ones in Refs. 8, 9.

As will be explained in Sec. 3, our method is similar to the usual Maxwell
construction used in the mean-field description of liquid-vapor phase transitions.
Moreover, this method is also justified in detail in recent interesting mathematical
work on Hartree–Fock theory for Hubbard-like systems(13,14); see also Refs. 15, 16
for an alternative derivation. However, this method is usually not used in mean field
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studies of the Hubbard-like models; one notable exception is Su(17) who applied
a similar method to the 2D t − U − V Hubbard model. Our results show that 2D
Hubbard-like models are peculiar in that these co-existing phases persist in large
regions of phase space, and thus allowing for inhomogeneous phases changes the
results dramatically.

It is important to note that our results are exact for a finite system, despite
our using numerics to determine our phase diagrams: the mean field diagrams
are given by analytical formulas, and we only use numerics to evaluate and plot
the functions determined by them. We made sure the system sizes we use are
large enough so that finite size effects are irrelevant, as can be clearly seen in
Fig. 5.

It is interesting to compare our phase diagrams with recent results on the
2D t − t ′ − U Hubbard model obtained with quantum Monte Carlo, (18) exact
diagonalization, (19) unrestricted Hartree–Fock, (20) and renormalization group
methods. (21) One important common conclusion from these studies is that there
is a delicate competition between antiferromagnetism and ferromagnetism which
depends sensitively on the band structure and doping. Our results confirm these re-
sults, shed interesting light on them, and extend them to parameter regimes which
previously have not been studied. A more detailed comparison will be given at the
end of the paper.

We stress that, while our method does not account for fluctuations or details
of states which are not translational invariant, it allows to detect frustration in the
sense of incompatibility between homogeneous states and the doping constraint.
Such frustration suggests interesting physical behavior to be explored by more
sophisticated methods, and mean field theory provides a simple method to find
these interesting parameter regions.

The point we make in this paper (“allow for mixed phases . . . ”) is rather
elementary. The reason why we elaborate it at such length is that there exist
mean field theory phase diagrams for 2D Hubbard-like models in the litera-
ture which are well established but which were obtained by ignoring this point
and thus are qualitatively wrong. It seems that, due to this, there is a wide-
spread belief that mean field theory cannot be trusted for such models. We feel
that this has been very unfortunate, and the aim of this paper is to rehabilitate
mean field theory as a useful and trustworthy method also for 2D Hubbard-like
models.

1.2. Results

We now describe our results in more details. We use the standard mean field
equations, (8,9,22) but we extend them by a method allowing us to detect possible
instabilities towards phase separation, (16) as explained in more detail in Secs. 2
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Fig. 1. Phase diagram of the 2D Hubbard model as a function of U and doping ρ − 1 for parameters
t = 1 and t ′ = 0. We use Hartree–Fock theory restricted to ferromagnetic (F), antiferromagnetic (AF)
and paramagnetic (P) states, and we find large mixed regimes where neither of these translational
invariant states is thermodynamically stable. The results are for L = 60 and β = 1000 which is
practically indistinguishable from the thermodynamic limit. (The parameters are defined in the main
text.)

and 3. As mentioned, previous mean field phase diagrams for the 2D Hubbard
model (t ′ = 0) predict an AF phase in a finite region around half filling. (8) Our
corresponding phase mean field diagram is given in Fig. 1. It shows that the AF
phase exists only strictly at half filling, and at finite doping close to half filling
no simple translation invariant state is thermodynamically stable, in agreement
with unrestricted Hartree–Fock theory.(10–12,23) Our discussion in Section 3 gives
an intuitive explanation of the seemingly paradoxical fact that, even though the
AF phase at half filling is very stable, it cannot persist at any non-zero doping
value.

Our main results are the full phase diagrams for 2D t − t ′ − U Hubbard model
for t ′ = 0 and t ′ = −0.35t in Figs. 1 and 2, respectively. They were obtained for
a system size so large that they are practically identical with the thermodynamic
limit. The phase diagrams are remarkably rich and very different from correspond-
ing previous results: compare our Fig. 1 with Fig. 3 in Ref. 8 and our Fig. 2 with
Fig. 1 in Ref. 9. Our results demonstrate that mixed phases are a typical feature of
2D Hubbard-type models: as one changes doping one never goes directly from one
mean field phase to another, but there seems always a finite doping regime with a
mixed phase in between. It is also interesting to note that the qualitative features
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Fig. 2. Phase diagram of the 2D Hubbard model as a function of U and doping ρ − 1 for parameters
t = 1, t ′ = −0.35, L = 60 and β = 1000, computed as Fig. 1. For large U and ρ close to zero it
becomes numerically difficult to distinguish between the F and P phase, which is the reason for the
fuzzy phase boundaries in this region of the phase diagram.

of the phase diagram are very sensitive to changes in the next-nearest-neighbor
(NNN) hopping constant t ′, as is known from other methods; see e.g. Refs. 18, 20,
21. In particular, while a pure AF phase is possible only at half filling for t ′ = 0,
the AF phase can be doped by electrons, but not holes, for t ′ < 0 at larger values
of U , in agreement with previous results. (24)

We note that we have not further divided and specified the mixed regions in
our phase diagrams since this information can be easily deduced as follows: For
example, a point in a mixed region corresponds to a mixture of F and AF if the
closest homogeneous phases horizontally are F and AF, etc.

1.3. Plan

The plan of the rest of this paper is as follows. Section 2 summarizes the
formalism we use. Section 3 contains a detailed, intuitive discussion of our method
to determine the thermodynamically stable mean field phase as a function of
parameters, and we also give some computational details there. We conclude with
a few remarks in Section 4. Some important technical details are discussed in an
appendix.



830 Langmann and Wallin

2. MEAN FIELD THEORY: FORMALISM

In this section we collect the well-known formulas underlying our computa-
tions.

We start by fixing our notation. We consider the 2D Hubbard model defined
by the Hamiltonian

H = −t
∑

〈i, j〉,α
(c†i,αc j,α + H.c.) − t ′ ∑

〈〈i, j〉〉,α
(c†i,αc j,α + H.c.)

−µ
∑

i,α

c†i,αci,α + U
∑

i

(
ni,↑ − 1

2

)(
ni,↓ − 1

2

)
(1)

with the on-site repulsion U > 0 and the hopping amplitudes t > 0 and t ′ between
the nearest neighbor (NN) sites 〈i, j〉 and next-nearest neighbor (NNN) sites
〈〈i, j〉〉 on a square lattice with L2 sites, respectively; the fermion operators c(†)

i,α are
parametrized by the spin variable α =↑,↓ and lattice sites i = (ix , iy) where ix,y =
1, 2, . . . , L , ni,α = c†i,αci,α are number operators, and µ the chemical potential as
usual. The fermion density is

ρ = 1

L2

∑

i,α

〈ni,α〉 (2)

with 〈·〉 the ground state expectation value to be specified below. Our conventions
are such that particle-hole symmetry is manifest: ρ − 1 → 1 − ρ corresponds to
µ → −µ and t ′ → −t ′ and, in particular, half filling ρ = 1 at t ′ = 0 corresponds
to µ = 0. Note that this model is defined on a finite dimensional Hilbert space

(isomorphic to C
4L2

).
We recall that unrestricted Hartree–Fock (HF) theory is formally obtained by

introducing

qi = 〈ni 〉, mi = 〈si 〉 (3)

and replacing the Hubbard interaction by external field terms as follows,

ni,↑ni,↓ → 1

4

(
m2

i − q2
i

) + 1

2
(qi ni − mi · si ),

where 1
2Umi and 1

2Uqi are mean fields coupling to the fermion spin

si =
∑

α,α′
c†i,ασ αα′ci,α′

and (local) density

ni =
∑

α

c†i,αci,α,



Mean Field Magnetic Phase Diagrams for the Two Dimensional 831

respectively; σ = (σ1, σ2, σ3) are the usual Pauli spin matrices. This replacement
leads to a Hamiltonian describing non-interacting fermions in external fields,
H → HH F with

HH F =
∑

i

U

4

(
m2

i − q2
i

) +
∑

i, j,α,α′
c†i,αhi,α, j,α′c j,α′ (4)

where

hi,α, j,α′ = −ti jδαα′ + δi j

(
1

2
U [(qi − 1)δαα′ − mi · σ αα′ ] − µδαα′

)
(5)

is a self-adjoint 2L2 × 2L2-matrix which can be interpreted as a one-particle
Hamiltonian; ti j here equals t for NN sites, t ′ for NNN sites, and is zero otherwise.
One now interprets 〈·〉 in (3) as the expectation value in the ground state of HH F in
(4) and (5). This yields the Hartree–Fock equations allowing to self-consistently
compute qi and mi (see e.g. Section 2 in Ref. 12).

We now observe that these Hartree–Fock equations can also be obtained as
saddle point equations ∂F/∂mi = 0, ∂F/∂qi = 0 from the free energy function

F = − 1

βL2
logZ (6)

where

Z = Tr
(
e−β HH F

)
(7)

is the partition function defined by a trace over the fermion Fock space, and β is
the inverse temperature. A straightforward computation yields

F = U

4L2

∑

i

(
m2

i − (qi − 1)2
) − 1

βL2

2L2∑

�=1

log cosh
βE�

2
, (8)

with E� the eigenvalues of the one-particle Hamiltonian h = (hi,α, j,α′ ) in (5). (16)

The physical solution of the Hartree–Fock equations are such that

FH F = min
mi

max
qi

F(mi , qi ). (9)

This somewhat counter intuitive prescription can be shown to actually correspond
to minimizing the grand canonical free energy; see the Appendix for details. The
corresponding fermion density is obviously given by

ρ − 1 = −∂FH F

∂µ
. (10)

We stress that the variational principle in (9), while implying standard Hartree–
Fock theory, is not equivalent to it: the standard Hartree–Fock equations can
have several solutions, but (9) provides a simple method to solve Hartree–Fock
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equations so as to avoid the unphysical solutions: first maximize F with respect to
the qi , and then minimize with respect to the mi . In case we restrict Hartree–Fock
theory by making a simplifying ansatz for the mean fields qi and mi as below, it
can happen that one finds several Hartree–Fock solutions at a fixed value of µ. In
this case one must take the solution minimizing the free energy.

Mean field theory is obtained from Hartree–Fock by restricting to mean
fields which are invariant under translations by two sites. In this paper we follow
Refs. 8, 9, 22 and restrict ourselves to states describing antiferromagnetism (AF),
ferromagnetism (F) and paramagnetism (P). We thus make the following ansätze

AF : qi = q, mi = mAF(−1)ix +iy ez

F : qi = q, mi = mFez

P : qi = q, mi = 0 (11)

where ez is the unit vector in z-direction. With this restrictions it is easy to compute
the eigenvalues E� by Fourier transform. One obtains

AF : Ek,± = 1

2
[ε(k) + ε(k + Q)] + U

2
(q − 1) − µ

±1

2

√
[ε(k) − ε(k + Q)]2 + (UmAF)2

F : Ek,± = ε(k) + U

2
(q − 1 ± mF) − µ

P : Ek,± = ε(k) + U

2
(q − 1) − µ (12)

where the quantum numbers labeling the eigenvalues are � ≡ (k, ε) with ε = ±
a band index and k = (kx , ky) with kx,y = (2π/L)×integer momenta restricted to
the Brillouin zone −π ≤ kx,y ≤ π ; Q = (π, π ) is the AF vector, and

ε(k) = −2t[cos(kx ) + cos(ky)] − 4t ′ cos(kx ) cos(ky) (13)

is the usual tight binding band relation. Thus the mean field free energy becomes

FX = U

4

(
m2

X − (q − 1)2
) − 1

βL2

∑

k,ε=±
log cosh

β

2
Ek,ε (14)

for X = AF, F and P (mP = 0), where the k-sum becomes an integral in the
thermodynamic limit L → ∞. The standard mean field equations (see e.g. Sec. 2
in Ref. 9) are obtained from this from differentiation, ∂FX/∂q = ∂FX/∂m X = 0.
Note that q = ρX (fermion density at fixed µ in the X -state) but, as explained in
the next section, the relation of ρX to the system density ρ is somewhat subtle.
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3. MEAN FIELD PHASE DIAGRAMS

We now explain our method to compute phase diagrams, concentrating on the
point where we deviate from previous treatments. As a representative example we
discuss the computation of the phases by our method for the 2D Hubbard model
with U = 6, t = 1, and t ′ = −0.16; see (1). One reason for this choice is that it
shows nicely several qualitative features which can occur in the phase diagram,
another that these parameter values are of interest for HTSC compounds. (25)

As discussed, mean field theory for the Hubbard model is obtained by restrict-
ing Hartree–Fock theory to translational invariant states describing antiferromag-
netism (AF), ferromagnetism (F) and paramagnetism (P). At zero temperature one
can start with three variational states which all are Slater determinants (26) built
of one-particle wave functions which are eigenstates of a mean field Hamiltonian
where the Hubbard interaction is replaced by external field terms,

|Slater〉 = |X〉, X = AF, F or P. (15)

These fields include the the fermions density ρ and the magnetization which is
staggered for AF, constant for F, and zero for P, and they are determined by the usual
Hartree–Fock equations given in the previous section. It is important to note that
the fermion density is fixed in the standard Slater states, but we use a generalization
of Slater’s variational principle to Gibbs states allowing for finite temperature 1/β

and where the fermion density is varied by changing a chemical potential µ (grand
canonical ensemble; see the Appendix for details), but for simplicity we assume
1/β = 0 in the following discussion. We now compute the Hartree–Fock ground
state free energy per site, FX , for each of these states X = AF, F and P, as a
function of µ. One thus obtains the formulas given in the previous section. These
have to be evaluated numerically which is, however, not very demanding (it can
be done with MATLAB and on a PC).

Figure 3 gives the result for our example. At fixed value of µ, the mean field
ground state is determined by the minimum,

Fmin = min
X=AF,F,P

FX . (16)

It is now important to recall that the fermion density ρ can be computed as
µ-derivative of the free energy as in (10). From Figs. 3 and 4 is is obvious that
ρ as a functions of µ is, in general, only piecewise continuous, and it has jumps
at the particular values of µ where the minimum free energy curve changes, for
example, from the AF to the F curve at the particular value µ = µ2. The physical
interpretation of this is as follows. We start at µ = 0 where we obviously have
the AF ground state and half-filling, ρ − 1 = 0. As we decrease µ, ρ − 1 remains
zero since FAF does not change. This is due to the AF gap: as long as µ remains in
the gap the fermion density cannot change. For large enough µ values the AF band
edge is reached and the slope of FAF starts to decrease. However, before this can



834 Langmann and Wallin

µ

M
F

 fr
ee

 e
ne

rg
y

AF

F

P

µ1 µ2 µ3

Fig. 3. Mean field free energy FX of the 2D Hubbard model with t = 1, t ′ = −0.16, U = 6, L = 60
and β = 1000 as a function of the chemical potential µ. Shown are the curves for X = AF, F and P (thin
lines) and the absolute minimum Fmin (thick line). The dashed lines indicate the particular values µi ,
i = 1, 2, 3, of µ where the phases change. At these values the derivative of Fmin has discontinuities,
and this leads to doping regimes with mixed phases; see Fig. 4. Color online.

happen the F free energy has become lower and taken over: as one decreases µ the
F free energy decreases, and at a value µ = µ2 the two curves cross, FAF = FF

at µ = µ2. At this point we go from the AF to the F phase. Since the fermion
densities ρX (µ2) − 1 = −∂FX/∂µ|µ=µ2 for the states X = AF and X = F are
different, it is impossible to get a density value in between with either state. There
is, however, a possibility to realize such a fermion density with the following
mixed state exactly at µ = µ2,

w|AF〉〈AF| + (1 − w)|F〉〈F|, (17)

with the relative weight 0 < w < 1 determined by the fermion density as follows,

ρ = wρAF(µ2) + (1 − w)ρF(µ2), 0 < w < 1. (18)

We now discuss the interpretation of this mixed solution. One possibility is
that the system has phase separated and split up into AF and F regions. (27) Of
course, the spatial structure of the actual state is not available in the mean field
description by the mixed state, but it can in principle be calculated using unre-
stricted Hartree–Fock theory. However, since the bulk free energy dominates over
the inter-facial free energies in the thermodynamic limit, the mixed state gives
an accurate description of the thermodynamics. We stress that the appearance
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Fig. 4. Doping ρ − 1 of the 2D Hubbard model as a function of the chemical potential µ. The
parameters are as in Fig. 3 (t = 1, t ′ = −0.16, U = 6, L = 60 and β = 1000). The curves are the
derivatives of the corresponding ones in Fig. 3. The thick line determines the mean-field phase diagram,
with the discontinuities at µ = µi , i = 1, 2, 3 determining doping regions where no pure phase F, AF or
P is thermodynamically stable. The wiggles of the curves are due to finite size effects which, however,
have no effect on the phase boundaries (this is demonstrated in the inset of Fig. 5). Color online.

of such a mixed state does not necessarily mean phase separation. The effect of
the phase boundaries and other possible states have been excluded in our ap-
proximation. To know the actual state in the mixed regions thus is beyond our
calculation and can be decided only by doing more work, e.g., using unrestricted
Hartree–Fock taking into account more complicated states. Nevertheless, the oc-
currence of such a mixed states proves rigorously that no simple translational
invariant state of the kind assumed in our mean field ansatz is thermodynamically
stable. The mixed regions of the phase diagram are of particular interest since
there the free energy is degenerate and thus the details of the solution can be
strongly affected by fluctuations, phase boundaries, or details neglected in the
model.

It is important to note that there are two further jumps of ρ and two further
corresponding mixed phases: one at µ = µ1 with F coexisting with P, and another
at µ = µ3 with AF and P coexisting. Again these mixed phases persist in finite
doping regimes. It is also interesting to note that, while for t ′ = 0 the mean field
free energies are invariant under the electron-hole transformation µ → −µ, the
finite value of t ′ = −0.16 here leads to a qualitative difference between hole
doping (µ < 0) and electron doping (µ > 0). As seen in Fig. 3, the F state can



836 Langmann and Wallin

compete with the AF state only for µ < 0, and this implies that it is possible to
dope the AF state by electrons but not by holes.

We thus see that, even though we restricted Hartree–Fock theory to simple
translation invariant states as in (15), our way of treating the doping constraint has
implicitly also included the possibility of having a mixed state as in (17) as ground
state, and we find that such a mixed state indeed occurs in a significant part of the
doping regime.

We stress that our method to determine the phase boundary does not increase
the computational effort of mean field theory, and it is easy to do the computations
also for large system sizes. Most of our computations were done for a L × L lattice
with L = 60. While at this values of L some finite size effects are still visible in the
relation between doping ρ − 1 and the chemical potential µ (see Fig. 4), the inset
in Fig. 5 demonstrates that resulting phase boundaries are practically identical with
the ones in the thermodynamic limit. We also checked that the value β = 1000
we used for the inverse temperature practically gives the zero temperature phase
boundaries.

Figure 5 shows the phases of the 2D Hubbard model as a function of the
chemical potential and coupling constant U and for t ′/t = −0.35. We included

2.5
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P F AF

F

P

P

F

AF

Fig. 5. Phases of the 2D Hubbard model as a function of the chemical potential for the same parameters
as in Fig. 2 (t = 1, t ′ = −0.35, β = 1000, L = 60). Inset: Blowup of the region around the minimum
of the phase lines in the main figure, showing interesting fine structure in the phase diagram. Also shown
is the result from a calculation for system size L = 120 (crosses). The coincidence between results for
two different system sizes demonstrate that L = 60 is practically already in the thermodynamic limit.
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this also since it is conceivable to have other physical realizations of the model
where the particle density is not fixed and the chemical potential can be changed
by an external electric field.

4. CONCLUSIONS

In conclusion, we have presented a simple generalization of standard mean
field theory, including the possibility of phase separated mean field states. We have
presented results for the phase diagram of the 2D t − t ′ − U Hubbard model,
including values of parameters suggested by the HTSC materials. We find that
the NNN hopping t ′ significantly alters the solution, in agreement with what is
found by other methods; see e.g. Refs. 18, 20, 21. The resulting rich and nontrivial
phase diagrams show significant qualitative differences between electron and hole
doping for even small values of t ′. Moreover, a finite t ′ suppresses order in the weak
coupling regime, but can have the opposite effect at strong coupling; see Figs. 2
and 5. Our results are much richer than those obtained in previous studies. (8,9) The
correctness of our method is justified by mathematical rigorous results. (13,14) The
simple theory presented here can be straightforwardly generalized to a number
of interesting cases, including more general mean field states like stripes, and to
more complicated models with additional interaction terms or more bands, etc.

We stress once more that the method presented here does not necessarily
produce accurate solutions to the problem, as is often the case with mean field
theory. Nevertheless the method provides a useful starting point for estimating
the structure of the phase diagram, providing inexpensive guidance for more
accurate but costly calculation methods towards interesting regimes in the phase
diagram.

As mentioned, the model we study is generally believed to be relevant for
HTSC. (1) In this context is would be important to include the possibility of d-wave
superconductivity SC which is believed to occur in this model near the AF phase;
see Ref. 4 for review. However, for this more sophisticated methods than Hartree–
Fock theory are needed. One example for such a method, which is technically much
harder but captures more details, is the renormalized mean-field theory proposed
by Zhang et al. (28) and further explored in Refs. 29, 30.

It is worth stressing once more that, in case our method predicts a mixed phase,
this actually proves rigorously that no homogeneous Hartree–Fock state of the kind
taken into account can minimize the Hartree–Fock free energy. However, in case
our methods finds a homogeneous phase, it still is possible that the minimizing
Hartree–Fock state is inhomogeneous.

Our results show that there is a homogeneous mean field ferromagnetic phase
in the 2D Hubbard model at larger coupling values, and at finite coupling this phase
is separated from the antiferromagnetic half-filled state by a mixed region. At
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increasing coupling this mixed regions shrinks, and our numerical results indicate
that it shrinks to zero at infinite coupling, in agreement with Nagaoka’s result. (31)

We finally compare in more details our results with two other ones obtained
recently by more sophisticated methods. Reference 20 presents the phase diagram
for the 2D t − t ′ − U Hubbard model on a 12 × 12 lattice obtained by unrestricted
Hartree–Fock theory and for the parameter values t ′ = 0.3, U = 8 and the doping
regime 0 ≤ ρ − 1 ≤ 0.35 (t = 1). This phase diagram agrees very well with ours
in Fig. 2 for t ′ = −0.35 and negative doping values (we recall that the model is
invariant under t ′ → −t ′ and ρ − 1 → 1 − ρ): we describe the region where un-
restricted Hartree–Fock finds inhomogeneous domain wall- and polaron solutions
as mixed AF and F phase, which then is followed by a pure F phase at around the
same doping value as given in Ref. 20. We also compare with the Quantum Monte
Carlo results on the competition between AF and F in Ref. 18: noting that t ′ in
Ref. 18 corresponds to our −t ′, they find competition between AF and F in the
same parameter region as we, and the increase of the F region with U illustrated
by the results for U = 4, 2 and 5 in Figs. 6, 8 and 9 in Ref. 18 is consistent with
our result in Fig. 5. This clearly demonstrates that mean field theory is a useful
method even for 2D Hubbard-like models, contrary to what seems to be generally
believed.

Added Note . Jonas de Woul recently extended the results described in
the present paper by also including ferrimagnetic and domain wall mean field
solutions. (32) His results provide further examples for the importance of mixed
phases in restricted Hartree–Fock studies.

APPENDIX: GENERALIZED HARTREE–FOCK THEORY

The derivation of the Hartree–Fock equations in Section 2 is only heuristic,
and it does not explain the variational principle in (9) which has central importance
for us. In this Appendix we therefore outline a mathematically rigorous deriva-
tion of it from first principles (14) (a detailed account appeared recently (32)). An
alternative derivation using functional integrals was given in Ref. 16.

A generalization of Hartree–Fock theory for the model defined in (1) to finite
temperatures 1/β and the grand canonical ensemble is obtained by minimizing
the grand canonical potential

�(qi , mi ) = Tr(H W ) + 1

β
Tr(W ln W ) (19)

over the set of all Gibbs states of the form

W = 1

ZR
e−β HR , ZR = Tr

(
e−β HR

)
(20)
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where HR = HR(qi , mi ) is the Hamiltonian

HR =
∑

i, j,σ,σ ′
c†i,αhi,α, j,α′c j,α′ (21)

with the matrix hi,α, j,α′ in (5). Note that mi and qi in HR are regarded as variational
parameters, and for β → ∞, � reduces to the expectation value of the Hubbard
Hamiltonian H in the normalized groundstate of the Hamiltonian HR which is a
Slater determinant. Generalized Hartree–Fock theory amounts to the following,

�H F = min
mi ,qi

�(qi , mi ). (22)

A key result proved in Ref. 14 is that this latter physical variational principle is
equivalent to the variational principle in (9) in the sense that they give the same
Hartree–Fock states and that FH F and �H F/βL2 are equal, up to an irrelevant
additive constant. (14) (We note that in Ref. 14 the variations in (22) are restricted
to fields satisfying |mi | ≤ 1, |qi − 1| ≤ 1, but this does not change the result
since any solution of (22) satisfies the equations in (3) which imply these latter
restrictions.)

We have used the functional F rather than � in the main text to follow the
tradition in the literature and since the numerics is easier. We have convinced
ourselves in a few numerical tests that working with � gives the same results.

ACKNOWLEDGMENTS

We acknowledge helpful discussions with Manfred Salmhofer. We also thank
an anonymous referee for pointing out Ref. 17 and Jonas de Woul for carefully
reading the manuscript and helpful comments. This work was supported by the
Swedish Science Research Council (VR).

REFERENCES

1. M. Imada, A. Fujimori, and Y. Tokura, Metal-insulator transitions. Rev. Mod. Phys. 70:1039 (1998).
2. E. Dagotto, Correlated electrons in high-temperature superconductors. Rev. Mod. Phys. 66:763

(1994).
3. E. Demler, W. Hanke, and S. C. Zhang, SO(5) theory of antiferromagnetism and superconductivity.

Rev. Mod. Phys. 76:909 (2004).
4. P. W. Anderson, P. A. Lee, M. Randeria, T. M. Rice, N. Trivedi, and F. C. Zhang, The physics

behind high-temperature superconducting cuprates: The ‘plain vanilla’ version of RVB. J. Phys.:
Condens. Matter 16:R755 (2004).

5. P. A. Lee, N. Nagaosa, and X. G. Wen, Doping a Mott insulator: Physics of high-temperature
superconductivity. Rev. Mod. Phys. 78:17 (2006).

6. E. H. Lieb, Variational principle for many-fermion systems. Phys. Rev. Lett. 46:457 (1981).
7. V. Bach and J. Poelchau, Accuracy of the Hartree–Fock approximation for the Hubbard model. J.

Math. Phys. 38:2072 (1997).



840 Langmann and Wallin

8. J. E. Hirsch, Two-dimensional Hubbard model: Numerical simulation study. Phys. Rev. B 31:4403
(1985).

9. H. Q. Lin and J. E. Hirsch, Two-dimensional Hubbard model with nearest- and next-nearest-
neighbor hopping. Phys. Rev. B 35:3359 (1987).

10. D. Poilblanc and T. M. Rice, Charged solitons in the Hartree–Fock approximation to the large-U
Hubbard model. Phys. Rev. B 39:9749 (1989).

11. J. Zaanen and O. Gunnarsson, Charged magnetic domain lines and the magnetism of high-Tc
oxides. Phys. Rev. B 40:7391 (1989).

12. J. A. Verges, E. Louis, P. S. Lomdahl, F. Guinea, and A. R. Bishop, Holes and magnetic textures
in the two-dimensional Hubbard model. Phys. Rev. B 43:6099 (1991).

13. V. Bach, E. Lieb, and J. Solovej, Generalized Hartree–Fock theory and the Hubbard model. J. Stat.
Phys. 76:3 (1994).

14. V. Bach and J. Poelchau, Hartree–Fock Gibbs states for the Hubbard model. Markov Processes
Rel. Fields 2(1):225 (1996).

15. E. Langmann and M. Wallin, Restricted path integral approach to the doped Hubbard model.
Europhys. Lett. 37:219 (1997).

16. E. Langmann and M. Wallin, Mean-field approach to antiferromagnetic domains in the doped
Hubbard model. Phys. Rev. B 55:9439 (1997).

17. W. P. Su, Interplay of d-wave superconductivity and antiferromagnetism in cuprate superconduc-
tors: Phase separation and pseudogap phase diagram. Mod. Phys. Lett. B 19:1295 (2005).

18. H. Taniguchi, Y. Morita, and Y. Hatsugai, Magnetism in the two-dimensional t − t ′ Hubbard
model: From low- to over-doping. Phys. Rev. B 72:134417 (2005).

19. L. Arrachea, Itinerant ferromagnetism in the two-dimensional t − t ′ Hubbard model. Phys. Rev.
B 62:10033 (2000).

20. B. Valenzuela, M. A. H. Vozmediano, and F. Guinea, Inhomogeneous structures in the t − t ′
Hubbard model. Phys. Rev. B 62:11312 (2000).

21. C. Honerkamp and M. Salmhofer, Temperature-flow renormalization group and the competition
between superconductivity and ferromagnetism. Phys. Rev. B 64:184516 (2001).

22. D. Penn, Stability theory of the magnetic phases for a simple model of the transition metals. Phys.
Rev. 142:350 (1966).

23. W. P. Su, Spin polarons in the two-dimensional Hubbard model: A numerical study. Phys. Rev. B
37:9904 (1988).

24. A. Singh and H. Ghosh, Stability of the doped antiferromagnetic state of the t − t ′ Hubbard model.
Phys. Rev. B 65:134414 (2002).

25. M. S. Hybertsen, E. B. Stechel, W. M. C. Foulkes, and M. Schlüter, Model for low-energy electronic
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